Biosyntéza živočišného vitamínu D
7-dehydrocholesterol - Provitamín D3 - (7-DHC) - delta7-Cholesterol - Cholesta-5,7-dien-3-ol, (3ß)- - Provitamin D3 - provitamin D3 - Dehydrocholesterol
- Zoosterol
- As a serum cholesterol precursor
- Also found in the milk of several mammalian species
- In insects it is a precursor for the hormone ecdysone
- Required for reaching adulthood
- Discovered by Nobel-laureate organic chemist Adolf Windaus.
- Je secernován mazovými žlázami na povrch kůže
- Dostává ke styku s ultrafialovými paprsky (Wilczek 1978, 24)
- štěpen UVB zářením [4]
- Highest concentrations of 7-dehydrocholesterol
- Epidermal layer of skin - in the keratinocytes [11]
- Stratum basale
- Stratum spinosum
- Production of pre-vitamin D3 greatest in these two layers [7]
- Vitamin D3 is formed from the precursor steroid 7-dehydrocholesterol (7-DHC)
- Localized mostly on the plasma membrane of basal epidermal keratinocytes (80% of skin 7-DHC content) [13]
- 7-Dehydrocholesterol absorbs UV light most effectively at wavelengths between 290 - 320 nm
- Production of vitamin D3 occur primarily at those wavelength
- Quantity (intensity)
- Quality (appropriate wavelength) of the UVB irradiation
- Quantity of 7-dehydrocholesterol present in the skin
- Normal circumstances cca 25–50 ug/cm2 of skin available in the stratum spinosum and stratum basale of human skin [7]
- 7-dehydrocholesterol is photolyzed by ultraviolet light
- In a 6-electron conrotatory ring-opening electrocyclic reaction
- Product is previtamin D3 [11]
- The conversion of 7-dehydrocholesterol to vitamin D3 does not involve enzymes or protein factors
- Products + side-reaction products in skin
- Same degree as in an organic solvent (McLaughlin et al., 1982) [12]
- 10 min of summer sun on the hands and face
- Sufficient to generate 10 ug of vitamin D3
- Considered to be the daily requirement (Holick, 1981) [12]
- 7-dehydrocholesterol can be converted into either cholesterol or vitamin D (cholecalciferol)
- Conversion of 7-dehydrocholesterol to vitamin D occurs in the skin upon exposure to ultraviolet B light (290–320?nm)
- Normal sunlight conditions, only around 15% of available 7-dehydrocholesterol will be converted to vitamin D
- Excess 7-dehydrocholesterol in the skin will be converted to inert compounds for degradation [14]
Pokles
- Syntéza klesá s věkem !!
- Tedy i schopnost kůže vyrábět vit. D [17]
- Statins
- HMG CoA reductase-inhibitors
- Inhibit the synthesis of 7-dehydrocholesterol, also inhibit the synthesis of vitamin D [17]
7-Dehydrocholesterol reductase - DHCR7 - delta-7-sterol reductase (EC 1.3.1.21) - 7-DHC reductase - 7-dehydrocholesterol dehydrogenase/cholesterol oxidase - Delta7-sterol reductase
- Ultimate enzyme of mammalian sterol biosynthesis
- protein in humans encoded by the DHCR7 gene [7]
- Terminal enzyme of cholesterol synthesis in the Kandutsch-Russell pathway
- Converting 7-dehydrocholesterol (7DHC) to cholesterol
- Using NADPH [7]
- Removes the C(7-8) double bond introduced by the sterol delta8-delta7 isomerases [7]
- cholesterol + NADP+ = cholesta-5,7-dien-3beta-ol + NADPH + H+ [16]
- Important regulatory switch between cholesterol and vitamin D synthesis [12]
- DHCR7 used to convert 7-dehydrocholesterol to cholesterol
- Shortage of DHCR7 would decrease the body’s ability to convert 7-dehydrocholesterol into cholesterol
- Causing a build-up of 7-dehydrocholesterol
- Could be converted into vitamin D in the skin [14]
Teratogenita
- Drugs that inhibit DHCR7 resulted in deformities among 10.9% of babies born
- Drugs that increase DHCR7 expression resulted in deformities among 5.5% [14]
Inhibice DHCR7
- Drug-induced malformations
- Inhibitors of the last step of cholesterol biosynthesis
- AY9944 and BM15766
- Severely impair brain development [7]
- Vitamin D3’s inhibition of DHCR7 is indirect
Degradace DHCR
- DHCR7 is rapidly turned over
- Degradation is induced by the cholesterol product itself
- Resulting in decreased DHCR7 protein levels and activity
- Resulting in 7DHC accumulation
- Conditions of high cholesterol
- DHCR7 degradation is associated with increased Vitamin D production [20]
Absence of functional DHCR7
- Accumulation of 7DHC
- Lack of cholesterol
- Devastating developmental disorder
Smith–Lemli–Opitz syndrome - SLOS - 7-dehydrocholesterol reductase deficiency
- Inborn error of cholesterol synthesis
- Autosomal recessive
- Multiple malformation syndrome
- By a mutation in the enzyme 7-Dehydrocholesterol reductase [7]
- Patients' plasma
- cholesterol levels are generally low
- 7-dehydrocholesterol concentrations are markedly elevated [15]
- Plasma total sterols are abnormally low
- Correlate negatively with the percent of 7-dehydrocholesterol [15]
- 7-dehydrocholesterol and 8-dehydrocholesterol accumulate in the syndrome [15]
Supplemental cholesterol
- May be therapeutic in SLOS
- Might suppress synthesis of both cholesterol and 7-DHC in individuals with SLOS
- Via inhibition of HMG-CoA reductase [13]
- Total sterol synthesis in the study was not significantly different from controls
- cholesterol supplementation did not inhibit synthesis of 7-DHC in SLOS subjects
- If 7-DHC is toxic and contributes to the pathogenesis of SLOS, alternative strategies in addition to cholesterol supplementation will need to be employed [13]
Statin treatment
- Can ameliorate the low DHCR7 expression seen with common SLOS mutations
- Wild-type DHCR7 relatively labile
- End-product inhibition
- cholesterol accelerates the proteasomal degradation of DHCR7
Lehké mutace DHCR7
- Evolutionarily favored in Northern climates, including Europe and Asia
- Selective pressure and a plausible heterozygote advantage for those variants
- Certain DHCR7 variants were associated with
- Lower vitamin D levels in the general population
- Individuals with polycystic ovary syndrome
- Links vitamin D levels with DHCR7 variants
- A heterozygote advantage allow most of the body’s 7-dehydrocholesterol to be converted into vitamin D (and not cholesterol)
- Explain why Northern populations have a higher prevalence of SLOS [14]
- Reproductive advantage because of the reduced fetal death due to rachitic cephalopelvic disproportion
rs12785878 u genu DHCR7
- cholesterol synthesis
- 11q12 (p=2.1x10(-27)
- Nižší hladiny vit. D [30]
- Common variants at DHCR7 are strongly associated with circulating 25-OH D [30]
- Could play a larger role in the normal regulation of vitamin D status than previously recognized [30]
- Nutrafitness - Lifetest - dostupný test v ČR
Major homozygotes
- Framingham Heart Study (n=5,656)
- 79.7 (0.71) Mean 25-OH D levels [30]
- 1958 British Birth Cohort (n=6,552) [30]
- 59.6 (0.31) Mean 25-OH D levels [30]
Heterozygotes
- Framingham Heart Study (n=5,656)
- 76.3 (0.86) Mean 25-OH D levels [30]
- 1958 British Birth Cohort (n=6,552) [30]
- 56.3 (0.30) Mean 25-OH D levels [30]
Minor homozygotes
- Framingham Heart Study (n=5,656)
- 71.7 (2.01) Mean 25-OH D levels [30]
- 1958 British Birth Cohort (n=6,552) [30]
- 55.7 (0.32) Mean 25-OH D levels [30]
rs7944926 DHCR7/NADSYN1
rs12800438 DHCR7/NADSYN1
rs3794060 DHCR7/NADSYN1
rs4945008 DHCR7/NADSYN1
rs4944957 DHCR7/NADSYN1
Inhibice cílená
- Pharmaceuticals are being designed to inhibit DHCR7
- Suggested treatment for hepatitis C
- Tamoxifen (IC50=12?nm)
- doxorubicin (IC50=150?nm)
- Used to treat cancer, typically breast cancer [14]
- Nafoxidine
Stimulace
- Several anti-psychotic drugs were found to enhance DHCR7 activity
- Can cause high 7-dehydrocholesterol in the absence of SLOS
Increased DHCR7 activity
- Would increase the rate of cholesterol synthesis
- Haloperidol
- Clozapine
- Chlorpromazine [14]
- Increase expression
- Metabolite of arsenic
Cholesterol
- 7-dehydrocholesterolu, derivátu cholesterolu
Prekalciferol
Expozice UVB (320-280 nm) záření - Dornovo záření
- 7-Dehydrocholesterol reacts with UVB light at wavelengths between 270 and 300 nm
- Peak synthesis occurring between 295 and 297 nm [11]
- Suchozemští obratlovci již cca před 300 milióny let
- Množství vytvořeného vitamínu D v kůži závisí hlavně na
- Geografické poloze co nejblíže rovníku
- Možnosti využívání UV záření v dostatečné míře
- Prochází sklem jen v 1-8 %
- Proniká vodou, zvláště mořskou
- Do hloubky několika metrů
- Umožněn vznik previtaminu D v těle ryb
- Fotony ultrafialového záření štěpí B jádro 7-dehydrocholesterolu
- vzniká cholekalciferol (vit. D3)
- Sluneční záření vzhledem k regulačním mechanismům syntézy nikdy nevede k hypervitaminose [1]
- Množství vytvořeného vitamínu D v kůži
- Závisí hlavně na geografické poloze
- Co nejblíže rovníku
- Na možnosti využívání UV záření v dostatečné míře [1]
- By mělo stačit až na 80 % denní potřeby [1] 90% [5]
Přepočtové tabulky
- K ploše odhalené kůže
- času expozice
- Zeměpisné šířce [6]
Geograficky
- Centrální Polsko
- UVB začíná pronikat od 12.4 [1]
- ČR v létě, kolem 21.6. mezi 10 a 16 h dostatek UVB záření
- Od 21.6. se slunce začíná obracet k jihu [1]
- V jižním Polsku
- UVB záření do 3.9. [1]
- V Turecku
- Do konce září [1]
- V Egyptě
- Do 20.10 [1]
Test na získání vitamínu D
- Tužku přiložíme kolmo k zemskému povrchu
- Pokud stín tužky mnohem kratší, než výška tužky, UVB záření k nám proniká [1]
Minimum expozice
- Adequate amounts of vitamin D can be produced with moderate sun exposure to the face, arms and legs
- Averaging 5–30 minutes twice per week
- Approximately 25% of the time for minimal sunburn
- The darker the skin, and the weaker the sunlight, the more minutes of exposure are needed. [11]
Extensive sun exposure
- Produces vitamin D levels equivalent to taking 10,000 IU per day
- no dangers have ever been observed
Ale v kůži je x různých mechanismů proti vzniku nadměrné dávky biologicky aktivní formy vit. D...
Previtamín D3
- Vznikne pre-vitamin D3 in the skin from 7-DHC
- Nestabilní
- Previtamín D3 vykazuje jenom 35% aktivitu cholekalciferolu (Ledvina – Stoklasová – Cerman2004, 519; Velíšek 2002, 49)
- Spontánně se přemění na svůj izomer - cholekalciferol vitamin D3 in the skin
- In an antarafacial sigmatropic hydride shift
- In an organic solvent at room temperature
- Cca 12 days to complete
- In the skin
- About 10 times faster than in an organic solvent [11]
Prolonged exposure to sunlight will not produce toxic amounts of D3
- UV irradiation further converts pre-D3 to
- Lumisterol3
- Inactive
- Accumulates with continued UV exposure
- Can be converted back to pre-D3 as pre-D3 levels fall [12]
- Tachysterol3
- Does not accumulate with extended UV exposure [12]
- Photoconversion of D3 itself to
- Suprasterols I and II
- 5,6 transvitamin D3 [12]
- Efficiency of vitamin D production by solar radiation
- Less than that of monochromatic UVB
- UVA portion of solar radiation influences the ratio of pre-D3 to lumisterol3 produced [12]
Cholekalciferol - vitamín D3
- Vitamin D3 vytvořený v pokožce nebo přijmutý potravou se dostává do cirkulace
- Vázán na protein (DBP, vitamin D-binding protein)
- Transportuje se do jater
- Hydroxylován v poloze 25 na 25-hydroxyvitamin D (25-OH-D)
- Není metabolicky aktivní [4]
- Vychytáván jaterními buňkami
- V endoplasmatickém retikulu podléhá hydroxylaci katalyzované enzymem D3-25-hydroxylasou [1]
- V hepatálních mikrozomech [4]
- Vznikne 25-hydroxycholekalciferol
- D3 is preferentially removed from the skin, bound to DBP
D3-25-hydroxylasa
- Katalyzuje hydroxylaci cholekalciferolu
- Vzniká 25-hydroxycholekalciferol
CYP27A1 mitochondrial - 25-hydroxylase
Liver
- Catalyzing a critical step in the bile acid synthesis pathway
- High capacity, low affinity enzyme
- 25-hydroxylation is not generally rate limiting in vitamin D metabolism
- Widely distributed throughout different tissues
- Highest levels in liver and muscle
- Also in kidney, intestine, lung, skin, and bone
- CYP27A1 can hydroxylate vitamin D and related compounds at
- 24, 25, and 27 positions
- D2 appears to be preferentially 24-hydroxylated
- D3 is preferentially 25-hydroxylated
- The 1alphaOH derivatives of D
- More rapidly hydroxylated than the parent compounds
- Differences in biologic activity between D2 and D3 or between 1alphaOHD2 and 1alphaOHD3 [22]
Keratinocytes 25-hydroxylase - CYP27A1
- Metabolizing vitamin D [12]
- Expression of like that of CYP27B1 is mitochondrial
- Increased by vitamin D and UVB irradiation [12]
- Side chain cleavage enzyme critical for steroidogenesis
- Also expressed in keratinocytes
- Could convert vitamin D to 20(OH)D with biologic activity
- Shown to be regulated by androgens [12]
Mutations in CYP27A1 lead to
- Cerebrotendinous xanthomatosis
- Associated with abnormal vitamin D and/or calcium metabolism
- In some but not all patients [22]
- Mice CYP27A1 deleted
- Elevated 25OHD levels
- Disruption in bile acid synthesis [22]
- Lack of CYP27B1
- Decreases the ability of cells to respond by cathelicidin and/or CD14 production [24]
Decrease CYP27A1 expression by
- bile acids
- Insulin
- testosterone
- Given to female rats [22]
Increased CYP27A1 expression by
- Dexamethasone
- Estrogen
- To male rats increases 25-hydroxylase activity [22]
- Stimulation of TLR2 by an antimicrobial peptide in macrophages
- Stimulation of TLR2 in keratinocytes by wounding the epidermis [24]
CYP2R1 - major microsomal 25-hydroxylase
Liver
- Have 25-hydroxylase activity
- CYP2R1 25-hydroxylates D2 and D3 equally
- First described in 2003
- Many other enzymes with 25-hydroxylase activity in vitro have been described
- Product of the CYP2R1 human gene [22]
- Product is released into the plasma
Skin and testes [22]
Keratinocytes
- Metabolizing vitamin D [12]
- Expression of like that of CYP27B1 is mitochondrial
- Increased by vitamin D and UVB irradiation [12]
- Side chain cleavage enzyme critical for steroidogenesis
- Could convert vitamin D to 20(OH)D with biologic activity
- Shown to be regulated by androgens [12]
Fibroblasty
- More specific 25-hydroxylase
- Found in dermal fibroblasts [12]
- Expression in keratinocytes not reported [12]
Mutations and variants CYP2R1
- CYP2R1 loss is associated with decreased 25OHD levels [22]
- Mice lacking CYP2R1
- Reduced 25OHD levels
- Combined deletion of CYP2R1 and CYP27A1
- Does not reduce these levels more that about 70% [22]
- CYP2R1 mutations in family members with rickets
- Respond to D therapy but suboptimally [22]
- Nigerian man with a point mutation in CYP2R1
- History of rickets
- 133 individuals with type 1 diabetes
- CYP2R1 polymorphisms
- Difficult to identify
- Common variants at the CYP2R1 locus
- Associated with circulating 25-OH D
- Strongest evidence to date that CYP2R1 is the enzyme responsible for the critical first step in vitamin D metabolism [30]
rs10741657 u genu CYP2R1
- Hydroxylation vit.D
- 11p15 (p=3.3x10(-20)
- Nižší hl. vit. D [30]
- Nutrafitness - Lifetest
Major homozygotes
- Framingham Heart Study (n=5,656)
- 75.4 (0.87) Mean 25-OH D levels [30]
- 1958 British Birth Cohort (n=6,552) [30]
- 56.8 (0.34) Mean 25-OH D levels [30]
Heterozygotes
- Framingham Heart Study (n=5,656)
- 78.6 (0.76) Mean 25-OH D levels [30]
- 1958 British Birth Cohort (n=6,552) [30]
- 60.2 (0.32) Mean 25-OH D levels [30]
Minor homozygotes
- Framingham Heart Study (n=5,656)
- 81.6 (1.26) Mean 25-OH D levels [30]
- 1958 British Birth Cohort (n=6,552) [30]
- 61.1 (0.29) Mean 25-OH D levels [30]
rs2060793 CYP2R1
rs1993116 CYP2R1
rs12794714 CYP2R1
rs10500804 CYP2R1
rs7116978 CYP2R1
Vitamin D-binding protein
- 52-59 kDA protein
- Synthesized in the liver
- Binds and transports vitamin D and its metabolites
- 25-OH D
- 1,25(OH)2D
- Alpha-globulin carrier protein [11]
- Metabolites produced from Vitamin D2 tend to bind less well to the vitamin D-binding protein [11]
- Liver produces DBP and albumin
- Calcidiol to kidneys
- Calcitriol throughout the body [11]
- High affinity for actin
- May serve as a scavenger for actin released into the blood during cell death
- Activate macrophages and osteoclasts
Zvýšení
- Estrogeny
- DBP like other steroid hormone binding proteins is increased by oral (not transdermal) estrogens and pregnancy
- Glucocorticoids
- EGF
- IL-6
- TGF-beta [22]
Deficit VDBP
- Production decreased
- In liver disease
- TGF-beta [22]
- Lost in protein losing enteropathies or the nephrotic syndrome
- Result in low total levels of the vitamin D metabolites
- Without necessarily being vitamin D deficient
- Free concentrations may be normal [22]
Knock out mouse in DBP
- no obvious abnormality was observed
- Increased turnover in vitamin D
- Increased susceptibility to osteomalacia on a vitamin D deficient diet
- Osteopetrosis (indicating failure of osteoclast function) was not found [22]
SNPs in GC gene
- Associated in changes in 25-OH D concentrations
- GC haplotypes (GC1S, GC1F, and GC2)
- Combinations of alleles at these nonsynonymous SNPs
- GC variants associated with lower 25-OH D concentrations
- Were strongly related to lower levels of DBP
- Levels of DBP may affect
- The delivery of 25-OH D and activated vitamin D (1,25(OH)2D) to target organs
- Clearance of vitamin D metabolites from the circulation
- Alterations in quantity or function of DBP
- Could be accompanied by changes in the relative proportions of free and bound 25-OH D
- Free fraction being the potential rate-limiting factor for 1,25(OH)2D production
rs2282679 v genu GC - vitamin D binding protein (GC, DBP)
- 4p12 (overall p=1.9x10(-109) for in GC
- Měla největší vliv
- vitamin D transport
- Lidé se dvěma nepříznivými kopiemi genu měli hladinu vitaminu D o 20 % nižší
- Influence vitamin D status [30]
- Variation at these loci identifies individuals of European descent who have substantially elevated risk of vitamin D insufficiency [30]
- Nutrafitness - Lifetest - dostupný test v ČR
Major homozygotes
- Framingham Heart Study (n=5,656)
- 82.6 (0.73) Mean 25-OH D levels [30]
- 1958 British Birth Cohort (n=6,552)
- 61.9 (0.33) Mean 25-OH D levels [30]
Heterozygotes
- Framingham Heart Study (n=5,656)
- 74.8 (0.81) Mean 25-OH D levels [30]
- 1958 British Birth Cohort (n=6,552) [30]
- 57.0 (0.30) Mean 25-OH D levels [30]
- Strong association of genetic variants at GC with 25-OH D concentrations
- SNP rs2282679 was strongly associated with DBP (P=4.0 × 10-42)
- With the minor allele related to lower DBP concentrations [30]
Minor homozygotes
- Framingham Heart Study (n=5,656)
- 64.6 (1.79) Mean 25-OH D levels [30]
- 1958 British Birth Cohort (n=6,552) [30]
- 52.8 (0.27) Mean 25-OH D levels [30]
- Strong association of genetic variants at GC with 25-OH D concentrations
- SNP rs2282679 was strongly associated with DBP (P=4.0 × 10-42)
- With the minor allele related to lower DBP concentrations [30]
rs4588 (Thr›Lys)
- Rs4588
- Only 11 bp away from rs7041
- Direct genotyping of rs4588 in one of our samples (Twins UK)
- Confirms that it is in linkage disequilibrium (r2>0.99) with multiple associated variants from our genome-wide association study [30]
rs3755967 GC
rs17467825 GC
rs1155563 GC
rs2298850 GC
rs7041 GC
- Association with circulating 25-OH D [30]
25-hydroxycholekalciferol - 25(OH)D3 - 25-OH-D - calcifediol
- Tvorba 25–hydroxycholekalciferolu zřejmě není přísně regulována (Ganong 2005, 396) [4]
- Dlouhý plazmatický poločas eliminace – 2 až 3 týdny
- Ukazatelem dlouhodobého stavu vitamínu D v organismu [5]
- Hlavní metabolit vitamínu D3
- Převažující formou vitamínu D v oběhu
- Většina jaterních zásob vitamínu
- Velká část hydroxycholekalciferolu také přechází do žluči
- Enterohepatální oběh [4]
- Prekurzorem pro dihydroxylované metabolity
- V cirkulaci opět navázán na vazebný protein
- Transportován do ledvin
- Hydroxylován v poloze 1 na biologicky aktivní metabolit 1,25-dihydroxyvitamin D (1,25-(OH)2-D)
- Může vznikat i v jiných tkáních, kde je přítomna aktivní 25D-1-hydroxyláza
1 alfa-hydroxyláza - 25-hydroxyvitamin D3 1-alpha-hydroxylase
- Product of the CYP27B1 human gene
- mitochondrial oxygenase
- Catalyzes the hydroxylation of 25-hydroxycholecalciferol (calcifediol) in the 1-alpha position
- Hydroxylace 25-hydroxycholekalciferolu na 1,25-dihydroxycholekalciferol = kalcitriol
- Biologicky aktivní = přímo ovlivňuje metabolismus vápníku [1]
Renální 25OHD-1alpha hydroxylase - CYP27B1
- 25-0H-D je v ledvinách je dále hydroxylován
- Konvertován v mitochondriích proximálních renálních tubulů [10]
- Působením enzymu 1-alpha-hydroxylasy
- Na biologicky aktivní kalcitriol
- Kromě 1,25-(OH)2-D se v cirkulaci mohou vyskytovat další metabolity
- Vznikající rovněž v ledvinách
- Nedostatek akt. vit. D při renálním selhání a nutnost podávání aktivního metabolitu !
- 1,25(OH)2-D !!!
- mitochondrial mixed function oxidase
- Significant homology to other mitochondrial steroid hydroxylases
- CYP27A1 (39%), CYP24A1 (30%), CYP11A1 (32%), and CYP11ß (33%)
- mitochondrial P450 enzymes are located in the inner membrane of the mitochondrion
- Terminal acceptor for electrons transferred from NADPH through ferrodoxin reductase and ferrodoxin
Mutations in this gene
- Rare autosomal disease of pseudovitamin D deficiency rickets
- Gene knocked out in animals
- Retarded growth, rickets, hypocalcemia
- Hyperparathyroidism
- Undetectable 1,25(OH)2D
- Alopecia is not part of this phenotype [22]
Stimulována
- PTH
- Růstovým hormonem
- Prolaktinem (laktogeneze potřebuje vápník)
- estrogeny
- Administration of PTH in vivo (50) or in vitro (51,52)
- Stimulates renal production of 1,25(OH)2D
- Can be mimicked by
- CAMP
- Forskolin [22]
- PTH activation of protein kinase C (PKC)
- Synthetic fragments of PTH
- Lacking the ability to activate adenylate cyclase
- Stimulate PKC activity
- Increase 1,25(OH)2D production [22]
- Direct activation of PKC with phorbol esters
- Increased 1,25(OH)2D production [22]
- Calcium modulates the ability of PTH to increase 1,25(OH)2D production
- Phosphate deprivation
- Can stimulate CYP27B1 activity in vivo , in vitro
- Can be blocked by hypophysectomy
- Partially restored by
- Growth hormone (GH)
- Insulin-like growth factor (IGF-I) [22]
Inhibována
- Vlastním produktem
- fosfáty (např. při renálním selhání s hyperfosforémií)
- Pravděpodobně i kalciovými ionty
- Současně se stimuluje hydroxylace v poloze 24
- FGF23 by osteocyte cells in bone
- FGF23 inhibit CYP27B1 activity in vivo and in vitro
- Responsible for
- Impaired phosphate reabsorption
- Impaired 1,25(OH)2D production [22]
- X-linked and autosomal dominant hypophosphatemic rickets
- Oncogenic osteomalacia
- FGF23 acts through FGF receptors 1 and 3
- In conjunction with the coreceptor Klotho [22]
- High phosphate stimulates FGF23 production from bone
- Likely the major mechanism by which phosphate leads to decreased CYP27B1 activity [22]
- 1,25(OH)2D administration
- Leads to reduction in CYP27B1 activity [22]
- 1,25(OH)2D
- Stimulates FGF23 production
- Inhibits PTH production [22]
- 24-hydroxylase activity blocked
- 1,25(OH)2D administration fails to reduce the levels of 1,25(OH)2D produced
- Apparent feedback regulation of CYP27B1 activity by 1,25(OH)2D appears to be due to its stimulation of CYP24A1 and subsequent catabolism [22]
Extrarenální
- Demonstrated in
- Anephric humans
- Anephric pigs [12]
- Kidney is generally considered the major source of circulating levels of 1,25(OH)2D
- Extrarenal CYP27B1 activities providing for local needs under normal circumstances
- Extrarenal sources can lead to increased 1,25(OH)2D and calcium levels in some pathologic conditions
Místa vzniku
- Expression of CYP27B1
- Highest in epidermal keratinocytes
- Kidney also expresses this enzyme in the renal tubules
- Brain, placenta, testes, intestine, lung, breast, macrophages,
- Lymphocytes, parathyroid gland, osteoblasts and chondrocytes
- Placenta
- Aktivované makrofágy a monocyty a dendritické buňky při [6]
- Tuberkulóze
- Nehodgkinských lymfomech
- Sarkoidóze
- Keratinocytes metabolizing vitamin D
- 1alpha-hydroxylase (CYP27B1) to 1,25(OH)2D [12]
- Regulated and coupled to the differentiation of these cells
- As keratinocytes differentiate their production of 1,25(OH)2D declines
- Higher levels of CYP27B1 in the stratum basale than in the suprabasal layers
- Change in activity = change in expression of the gene [12]
- Human keratinocytes rapidly and extensively convert 25(OH)D to 1,25(OH)2D
- Not clear how much of the 1,25(OH)2D produced by the epidermis actually enters the circulation
- Km for the 25(OH)D to CYP27B1 in keratinocytes is estimated to be 5 × 10-8 M
- Lower than that estimated for the kidney [12]
- Production of 1,25(OH)2D by isolated keratinocytes in culture
- Confirmed using intact pig skins perfused with 25(OH)D [12]
- 1,25-D is synthesized in cells of the immune system
- T cells
- Antigen-presenting cells
- Macrophages
- Often infected by the Th1 pathogens
- Extrarenal enzyme located in macrophages
- Major role in certain granulomatous conditions (e.g., sarcoidosis)
- Uncontrolled elevations of blood 1,25-(OH)2D3 levels
- Respiratory epithelial cells - primary lung epithelial cells
- Defense against airborne pathogens
- Express high baseline levels of activating 1 alfa-hydroxylase
- Low levels of inactivating 24-hydroxylase
- Increased expression of genes by the Vitamin D Receptor
Regulace
- Není regulována parathormonem, ale spíše faktory, jako:
- IFN-gama
- Suprese
- Maturací dendritických buněk [6]
- If renal production of 1,25(OH)2D is normal
- Circulating levels of 1,25(OH)2D appear to be sufficient to limit the contribution from epidermal production
- Likely due to the induction of 25(OH)D-24-hydroxylase (CYP24A1) in the keratinocyte by 1,25(OH)2D
- Catabolizes the endogenously produced 1,25(OH)2D before it leaves the cell in which it is produced [12]
- Extrarenal production tends to be stimulated by
- IFN-g
- TNF-a more effectively than PTH
- May be less inhibited by calcium, phosphate, and 1,25(OH)2D depending on the tissue [22]
Obcházení renální regulace
Alfacalcidol drug
- 25-hydroxylation in the liver will produce calcitriol as the active metabolite
- Will produce greater effects than other vitamin D precursors in patients with kidney disease
- Who have loss of the renal 1-alpha-hydroxylase [10]
24,25–dihydrocholekalciferol
- Vzniká snížením syntézy kalcitriolu
- Také metabolit vitamínu D3
- Méně účinný pro regulaci hladiny vápníku
- Ovlivňuje diferenciaci chrupavčitých buněk, maturaci chondrocytů růstové ploténky
- Určitou roli při hojení zlomenin [4]
Kalcitriol - 1 alfa,25-dihydroxycholekalciferol - 1alpha,25-dihydroxyvitamin D3 - 1,25-dihydroxyvitamin D3 - 1alpha,25-(OH)2D3 - 1,25(OH)2D - 1,25D3
- Hormonally active metabolite of vitamin D
- Three hydroxyl groups
- Cholecalciferol already has one hydroxyl group
- Product of calcifediol (25-OH vitamin D3), derived from cholecalciferol (vitamin D3)
- Nejedná se o product of hydroxylations of ergocalciferol (vitamin D2) !!!
- There are three (1,3,25-triol) in calcitriol [10]
- Increases the level of calcium (Ca2+) in the blood
- Increasing
- Vznik regulován pomocí zpětné vazby plazmatickým Ca2+ a PO43– [4]
- Auto-regulated in a negative feedback cycle
- By parathyroid hormone, fibroblast growth factor 23, cytokines, calcium, and phosphate [11]
- Syntetizován především v ledvinách, ale i z jiných tkání :
- Lymfatická tkáň
- Kůže
- Pankreas
- Prostata
- Mléčná žláza
- Placenta
- Kostní tkáň
- Chrupavky
- Makrofágy
- Tuberkulózní granulom
- Sarkoidóza [4]
- Formation of 1,25-dihydroxyvitamin D3
- By the action of hydroxylase enzymes in the epidermis
- 25-hydroxylase (CYP27A1)
- 25-hydroxyvitamin D3 1-?-hydroxylase (CYP27B1) (Christakos et al., 2016) [12]
24-hydroxyláza - 25(OH)D-24-hydroxylase - CYP24A1
- Initiates the degration of both 25-OH D and 1,25(OH)2D
- Activity reduction of calcifediol and calcitriol
- By hydroxylation at position 24 forming
- Secalciferol
- Calcitetrol [11]
- In the keratinocyte
- Induced by 1,25(OH)2D [12]
- Rozloží vit. D dříve než se dostane do cirkulace [12]
Mutations in human CYP24A1
- Modulate the level of this enzyme in selective tissue
rs2296241
- Does not change the amino acid sequence
- Alter protein levels of CYP24A1
- Functional impact on vitamin D response element binding
- SelfDecode
- Importance: 3
Major Allele: G = 54%
- A meta-analysis found that subjects with GG
- Had reduced the risk of androgen-related prostate cancer
- Subjects with a G
- Had decreased the risk of oral cancer
- Had a lower risk of oral lichen planus
Minor Allele: A = 46%
rs6013897 v genu CYP24A1
- 20q13
- Hydroxylation
- Genome-wide significant in the pooled sample (p=6.0x10(-10)
- Nižší hladiny vit. D [30]
- Nutrafitness - Lifetest
Higher levels of CYP24A1
- Breaks down excess 1,25-D
- Associated with poorer survival in lung adenocarcinoma
- 2011 study, CYP24A1 mRNA was elevated 8-50 fold in lung cancer
- Compared to normal non-cancerous lung
- Significantly higher in less severe cancers [24]
- CYP24A1 expression was increased in
- Metastatic breast cancer
- 53.7% in invasive carcinomas
- 19.0% in benign lesions [24]
- Deregulation of the Vitamin D signalling and metabolic pathways in breast cancer
- Favouring tumour progression
- During mammary malignant transformation
CYP24A1 knockout mouse
- Fails to produce any 24-hydroxylated metabolites of vitamin D
- Skeletal lesion is defective mineralization of intramembranous (not endochondral) bone
- Skeletal abnormality appears to be due to high circulating 1,25(OH)2D levels
- Mouse with one lacking the VDR corrects the problem [24]